The bumpy road of HIV vaccine development

Hanneke Schuitemaker
Head Viral Vaccine Discovery and Translational Medicine
Professor in Virology, Amsterdam UMC

4th April 2019 | Janssen Vaccines and Prevention B.V.
Disclosure

I have the following conflicts of interest to declare:

• I am an employee of Janssen Vaccines & Prevention B.V., a pharmaceutical company of Johnson & Johnson
Janssen Vaccines – Our Vision

Develop transformational vaccines that are first and/or best in class in areas of high unmet medical need

Help to halt HIV epidemic by preventive vaccination & contribute to a functional cure with a therapeutic vaccine

Respond fast and efficiently to outbreaks of pathogens of global concern such as Ebola

Prevent respiratory infections (RSV, Flu) impacting children, elderly and at risk patients

Prevent MDR bacterial infections such as ExPEC by vaccination as part of quest to address global AMR challenge
HIV: High unmet need
Burden in 2017

36.9 MILLION PEOPLE worldwide are currently living with HIV/AIDS

1.8 MILLION CHILDREN living with HIV

1 MILLION DIED from AIDS-related illnesses

21.7 MILLION of people living with HIV received antiretroviral drugs

1.8 MILLION NEW HIV Infections 5000 per day

Paradigms of HIV vaccine development

4 waves

- **Induction of Neutralizing Ab** (Hep B model)
 - Ends with failure of VaxGen GP120 protein efficacy trials

- **Induction of Cell-Mediated immunity**
 - Ends with failure of Merck Ad5-gag-pol-nef efficacy trials

- **Combination of Different Immune Responses** (functional Abs, memory T cells)

- **Induction of broadly Neutralizing Abs**

Still in discovery phase

- **RV144**: Viral Vector/gp120 protein: 30% efficacy
- **HVTN505**: DNA/Ad5: 0% efficacy

- Optimizing RV144 and other regimens to induce **functional non-neutralizing Abs**: efficacy in humans TBD
 - P5
 - Janssen
Our goal: a prophylactic HIV vaccine that protects against multiple clades of HIV-1

1. Vectors that elicit optimal immune responses
2. Mosaic inserts for global coverage (Gag-Pol-Env)
3. Trimeric env proteins for improved humoral immunity
Vaccine regimen selection studies

Efficacy
in non-human primates
NHP study #13-19

Immunogenicity
in humans, phase 1/2a
APPROACH study

The plan:

Vaccination 1&2 at week 0, 12

- **Ad26.Mos.HIV**
 - Ad26 with Mosaic gag-pol (mos1 & mos2) and mosaic env (mos1 & mos2) inserts

Vaccination 3&4 at weeks 24, 48

- **Ad26.Mos.HIV**
- **MVA-Mosaic**
 - MVA with Mosaic 1&2 gag-pol-env inserts

OR

- **gp140 Clade C**
 - Soluble gp140 env protein with Alum

OR

- **gp140 Clade C**
 - Soluble gp140 env protein with Alum
Three Parallel First-In-Human Studies

Phase 1 HIV-V-A002/IPCAVD006/ MENSCH N=25	Safety data MENSCH
Phase 1 HIV-V-A003/IPCAVD008 N=50	Safety data HIV-V-A003
Phase 1/2a HIV-V-A004/ APPROACH N=400	Go/no-Go heterologous boost in APPROACH

Pre-clinical Efficacy study

- First in Human MVA.Mos
- First in Human Clade C gp140
- First in Human Ad26.Mos.HIV and heterologous regimens

NHP study 13-19

Availability of NHP challenge data

Regimen Selection
Manufacturing challenge

Ad26.Mos.HIV
Ad26 vectors with Mosaic
* gag-pol or env * inserts

- Ad26.Mos2.Gag-Pol ✔
- Ad26.Mos1.Env ✔
- Ad26.Mos2.Env ✗

- 1 log lower yield compared to other Ad26 vectors at 10L scale
- Transgene instability in certain batches
- No scalable process for Ad26.Mos2.Env vector despite development efforts
Problem

Ad26.Mos2.Env cannot be produced at larger scale. Vector is poorly immunogenic.
Problem

Ad26.Mos2.Env cannot be produced at larger scale. Vector is poorly immunogenic.

Interim solution

Double dose of Ad26.Mos1.Env for NHP and APPROACH studies.

Durable Solution

Develop an alternative mos2.Env that is compatible with delivery.

-- Property of Janssen – Do not distribute --
AdVac® Vaccine components for the NHP13-19 and APPROACH studies

Ad26.Mos.HIV

- Ad26.Mos2.Gag-Pol
- Ad26.Mos1.Env
- Ad26.Mos2.Env

Ad26.Mos.HIV

- Ad26.Mos2.Gag-Pol
- Ad26.Mos1.Env

-- Property of Janssen – Do not distribute --
NHP13-19 - study design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Vaccination 1&2 wk 0, wk 12</th>
<th>Vaccination 3&4 wk 24, wk 48</th>
<th>IR SHIV challenge 6 months after 4th dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>Ad26.Mos.HIV + High Dose Clade C gp140</td>
<td>Blue arrow</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>Ad26.Mos.HIV</td>
<td>Blue arrow</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>MVA- Mosaic + High Dose Clade C gp140</td>
<td>Yellow arrow</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>MVA- Mosaic</td>
<td>Yellow arrow</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td></td>
<td>Gray arrow</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>Placebo</td>
<td>Placebo + High Dose Clade C gp140</td>
<td>Gray arrow</td>
</tr>
</tbody>
</table>

Barouch, Tomaka, Wegmann, et al., The Lancet, 2018

--- Property of Janssen – Do not distribute ---
APPROACH - study design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Vaccination 1&2 wk 0, wk 12</th>
<th>Vaccination 3&4 wk 24, wk 48</th>
<th>Follow up wk 52 to 96</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>Ad26.Mos.HIV + High Dose Clade C gp140</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>Ad26.Mos.HIV + Low Dose Clade C gp140</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>MVA- Mosaic + High Dose Clade C gp140</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>MVA- Mosaic + Low Dose Clade C gp140</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>MVA- Mosaic</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>Ad26.Mos.HIV</td>
<td>+ High Dose Clade C gp140</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>Placebo</td>
<td>Placebo</td>
<td></td>
</tr>
</tbody>
</table>

Barouch, Tomaka, Wegmann, et al., The Lancet, 2018

-- Property of Janssen – Do not distribute --
Ad26/Ad26+gp140: A Promising HIV Prophylactic Vaccine

Immune responses associated with NHP protection compare favorably in humans

High efficacy in NHP

- **67% full protection**
- **100% infection**

Control vs. Ad26/Ad26+gp140

Number of intrarectal challenges SF162.P3 SHIV

Favorable immunogenicity in humans

Barouch, Tomaka, Wegmann, et al., The Lancet, 2018
Problem

Ad26.Mos2.Env cannot be produced at larger scale. Vector is poorly immunogenic.

Interim solution

Double dose of Ad26.Mos1.Env for NHP and APPROACH studies.

Durable Solution

Develop an alternative mos2.Env that is compatible with delivery.
Design new clade C Env antigen to replace mosaic 2 Env: Mos2s

Preclinical data: Ad26.Mos2S is highly immunogenic and increasing the breadth of humoral immunity in preclinical studies (data not shown)
Expanding breadth & magnitude of immune responses

Ad26.Mos1.Gag-Pol
Ad26.Mos2.Gag-Pol
Ad26.Mos1.Env

Ad26.Mos.HIV

Ad26.Mos2S.Env

Ad26.Mos4.HIV

-- Property of Janssen – Do not distribute --
A randomized, parallel-group, placebo-controlled, double-blind Phase 1/2a study in healthy HIV uninfected adults to assess the safety/tolerability and immunogenicity of 2 different prime/boost regimens

TRAVERSE

Progress forward by moving horizontally
TRAVERSE – study design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Prime</th>
<th>Boost</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>55</td>
<td>Ad26.Mos.HIV</td>
<td>Ad26.Mos.HIV</td>
<td>+ High Dose Clade C gp 140</td>
</tr>
<tr>
<td>1B</td>
<td>11</td>
<td>Placebo</td>
<td>Placebo</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>22</td>
<td>Placebo</td>
<td>Placebo</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- **Prime:** Weeks 0 and 12
- **Boost:** Weeks 24 and 48
- **Follow up:**
 - 140 weeks post-prime
 - 140 weeks post-boost
Immunogenicity

Clade C gp140 ELISA

Envelop binding antibodies

ELISA titre

Baseline Tetralvalent
Week 16

Tetralvalent
Week 28

Trivalent
Week 16

Trivalent
Week 28

Placebo
Week 16

Placebo
Week 28

Legend:
- Baseline
- Tetravalent Responder
- Trivalent Responder
- Placebo Responder
- Non-responder

D. Stieh, HIV R4P Conference, Madrid October 2018

-- Property of Janssen – Do not distribute --
Immunogenicity

Significant improvement across clades & assays

Total IgG ELISA

IgG subclass Clade C ELISA

ADCP

Geometric Mean Ratio (95% CI) of 4V/3V group

-- Property of Janssen – Do not distribute --
Conclusions
TRAVERSE, week 28

<table>
<thead>
<tr>
<th>SAFETY</th>
<th>HUMORAL</th>
<th>CELLULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable safety profile through 3rd vaccination</td>
<td>Tetravalent Ad26 induces more Broad and Functional HIV Env-specific humoral responses</td>
<td>Tetravalent Ad26 induces Stronger Env-specific cellular responses</td>
</tr>
</tbody>
</table>

--- Property of Janssen – Do not distribute ---
From Early Development to Efficacy trials

Regimen selection and “Go-No Go” criteria based on pre-clinical challenge data and immunogenicity in humans.

#makeHIVhistory

-- Property of Janssen – Do not distribute --
Establishing Magnitude Criteria for Immune Parameters that correlate with Efficacy in NHP

Principles:
- Criterion 1: ELISA log10 > 3.8
- Criterion 2: ELIspot log10 > 2.15

Regimen GO with human data from APPROACH post 3rd when:
- >60% meets Crit 1 OR Crit 2
- >40% meets Crit 1 AND Crit 2
Final Regimen selection for Ph2b based on Immunological PoC

Ph1/2a APPROACH

<table>
<thead>
<tr>
<th>Prime at wk 0, 12</th>
<th>Boost at wk 24, 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad26.Mos.HIV 3-valent</td>
<td>Ad26.Mos.HIV 3-valent</td>
</tr>
<tr>
<td>gp140 Clade C with Alum</td>
<td>gp140 Clade C with Alum</td>
</tr>
</tbody>
</table>

ELISA vs ELISpot post 3rd Vaccination

- **ELISA Clade C**
 - Prime: 60%
 - Boost: 60%
 - Final: 40%

- **ELISpot ENV**
 - Prime: 64%
 - Boost: 70%
 - Final: 87%

Final Regimen selection for Ph2b based on Immunological PoC

- Prime at wk 0, 12
 - Ad26.Mos.HIV 3-valent
 - gp140 Clade C with Alum

- Boost at wk 24, 48
 - Ad26.Mos.HIV 3-valent
 - gp140 Clade C with Alum

- ELISA vs ELISpot post 3rd Vaccination
 - ELISA Clade C: Prime 60%, Boost 60%, Final 40%
 - ELISpot ENV: Prime 64%, Boost 70%, Final 87%
Final Regimen selection for Ph2b based on Immunological PoC

Ph1/2a APPROACH

<table>
<thead>
<tr>
<th>Prime at wk 0, 12</th>
<th>Boost at wk 24, 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad26.Mos.HIV 3-valent</td>
<td>Ad26.Mos.HIV 3-valent</td>
</tr>
</tbody>
</table>

Expanding magnitude and breadth of immune responses with 4-valent Ad26

<table>
<thead>
<tr>
<th>Ph1/2a TRAVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad26.Mos.HIV 4-valent</td>
</tr>
<tr>
<td>Ad26.Mos.HIV 4-valent</td>
</tr>
<tr>
<td>gp140 Clade C with Alum</td>
</tr>
</tbody>
</table>

ELISA vs ELISpot post 3rd Vaccination

- 94%
- 94%
- 100%
Ongoing: Imbokodo/HVTN705/HPX2008 Phase 2b Study

This vaccine is currently being evaluated for efficacy in young women in Southern Africa, with a target enrollment of 2,600.

#makeHIVhistory
Imbokodo/HVTN705/HPX2008: a phase 2b multicenter, randomized, parallel group, placebo-controlled, double-blind clinical trial

Population: Sexually active HIV-1 uninfected women (born female), age 18-35 years

Vaccine regimen: 2x Ad26.Mos4.HIV (week 0,12), 2x Ad26.Mos4.HIV+gp140 (week 24, 48)

Objective: to evaluate the efficacy of the vaccine regimen in reducing the incidence of HIV infection in women

Protective Efficacy hypothesis: 50% (lower bound >0%) reduction in HIV-1 acquisition

Status: enrolling

-- Property of Janssen – Do not distribute --
Towards the final regimen for Phase 3

From Clade C gp140 alone to Clade C + Mosaic gp140 combination

Decision to include a second protein will be based on clinical data demonstrating increased Clade B antibody responses without compromising clade C responses
ASCENT/ HPX2003/HVTN118/IPCAVD012 study design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Prime</th>
<th>Boost</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25</td>
<td>Placebo</td>
<td>Placebo</td>
<td></td>
</tr>
</tbody>
</table>

Status: data is being analysed

Note: Property of Janssen – Do not distribute.
A Few More Challenges Ahead in HIV Vaccine Development.... But Good Reasons to believe

<table>
<thead>
<tr>
<th></th>
<th>NHP Efficacy</th>
<th>Clinical efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per exposure</td>
<td>HIV-1</td>
</tr>
<tr>
<td>risk reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALVAC / gp120</td>
<td>29% not significant¹</td>
<td>31% RV144 trial²</td>
</tr>
<tr>
<td>DNA/Ad5</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Ad26 / Ad26+gp140</td>
<td>94%³</td>
<td>Pending</td>
</tr>
</tbody>
</table>

¹ Barouch unpublished; ² Rerks-Ngarm NEJM 2009; ³ Hammer NEJM 2013; ⁴ Barouch Lancet, 2018
External Collaborators & Partners

BETH ISRAEL DEACONESS, HARVARD MEDICAL SCHOOL
Dan Barouch
Raphael Dolin
Katy Stephenson

BRIGHAM & WOMEN’S, HARVARD MEDICAL SCHOOL
Lindsey Baden

BMGF
Emilio Emini
Peggy Johnston
Nina Russell

DAIDS, NIAID
Carl Dieffenbach
Dale Hu
Mary Marovich
Michael Pensiero
Tina Tong
Edith Swann

HVTN
Larry Corey
Nicole Frahm
Peter Gilbert
Glenda Gray
Jim Kublin
Julie McElrath
Georgia Tomaras

LANL
Bette Korber

IAVI
Fran Priddy

MHRP
Julie Ake
Nelson Michael
Merlin Robb

RAGON INSTITUTE
Galit Alter
Bruce Walker

USAMMDA
Elisabeth Heger

...and their teams
Acknowledgements

COMPOUND DEVELOPMENT TEAM

Iedo Beeksma
Ad Knaapen
Steven Nijs
Valerie Oriol-Mathieu
Maria Grazia Pau
Lorenz Scheppler
Daniel Stieh
Frank Tomaka
John Trott
Frank Wegmann
Mo Weijtens
...and their teams

VIRAL VACCINES DISCOVERY

Annemart Koornneef
Hans Langedijk
Danielle van Manen
Lucy Rutten

SENIOR MANAGEMENT

Macaya Douoguih
Jenny Hendriks
Jerry Sadoff
Stefan Thoelen

Johan van Hoof
Paul Stoffels

All the investigators, their staffs and the volunteers for their participation in this clinical program
Diagnosed with AIDS in 1990, Martin lives in San Francisco where he continues to create new pieces.